Общие проблемы применения многопроцессорных систем

М.В.Якобовский

mail: <u>lira@imamod.ru</u>

web: <u>http://lira.imamod.ru</u>

2012

Особенности момента

- Потребность в суперкомпьютерах высока
- Эффективность использования суперкомпьютеров низка:
 - Использование каждого ядра последовательной программой составляет проценты и доли процентов
 - Обмены, синхронизация и другие дополнительные операции ещё снижают эффективность параллельной программы
- Есть минимальный объем вычислений на процессорное ядро, определяющий число используемых ядер
- За счет многопроцессорности сложно сокращать время моделирования физического процесса, но можно повышать сложность решаемых задач, например за счет увеличения размеров изучаемых объектов

Дозвуковая аэродинамическая труба Т-104, ЦАГИ

- Скорость потока 10–120 м/с
- Диаметр сопла 7 м
- Длина рабочей части 13 м
- Мощность вентилятора
 28.4 МВт

http://www.tsagi.ru/rus/base/t104

- . Сопло
- 2. Двухступенчатый вентилятор
- 3. Рабочая часть
- 4. Форкамера
- Кабина аэродинамических весов
- 6. Кабина оператора
- 7. Диффузор
- 8. Шахта приточной вентиляции
- 9. Шахта вытяжной вентиляции
- 10. Газоотводящее устройство

Суперкомпьютер СКИФ МГУ «ЧЕБЫШЁВ»

- Пиковая производительность 60 TFlop/s
- Мощность комплекса 0.72 МВт http://parallel.ru/cluster/skif msu.html

Большие сетки

Тетраэдральные сетки 10⁸ узлов

Использование адаптивной сетки

Обтекание профиля NACA0012 (M=0.85, Re=10⁴) под нулевым углом атаки:

1.2

Фрагмент сетки

Равномерная сетка

Слева – ??КРУГЛОС?? пятно примеси

Адаптивная сетка

Слева – круглое пятно примеси

Адаптивные декартовы сетки

- Вначале сетка состоит из одной прямоугольной ячейки
- Каждая ячейка может быть разделена на четыре ячейки одинакового размера
- Если ячейки когда-то составляли одну ячейку, то они могут быть объединены обратно
- Каждая ячейка хранит величину, описывающую среднее значение неизвестной функции в пределах ячейки (метод конечных объёмов)

При данных предположениях сетку удобно хранить в виде четверичного дерева:

Дополнительные ограничения на размеры ячеек:

- Задан максимально допустимый размер ячеек
- Задан минимально допустимый размер ячеек
- Размеры соседних ячеек должны различаться не более, чем в 2 раза

Сравнение с равномерной сеткой

На рисунках показаны результаты решения простейшей задачи переноса на равномерной (слева) и адаптивной (справа) сетках с одинаковым числом ячеек (4096 штук). Скорость переноса направлена под углом 45° к линиям сетки; начальное условие показано пунктиром

Адаптивная сетка

Решение двумерной задачи фильтрации нефтеводяной смеси в области с неоднородной проницаемостью

В юго-западном углу находится скважина, нагнетающая воду, в северовосточном углу — добывающая скважина. 5-ти точечная схема Поле проницаемости с разбросом значений на 4 порядка).

Решение двумерной задачи фильтрации нефтеводяной смеси в области с неоднородной проницаемостью

В юго-западном углу находится скважина, нагнетающая воду, в северовосточном углу — добывающая скважина. 5-ти точечная схема Поле проницаемости с разбросом значений на 4 порядка).

Ограничения

- Пакетный режим исполнения и отладки приложений
- Процедуры авторизованного доступа к удаленным системам
- Высокая динамика изменения конфигурации суперкомпьютеров
- Несоизмеримость ресурсов рабочей станции пользователя и суперкомпьютера

Статическая балансировка загрузки

- Критерии декомпозиции
- Инкрементный алгоритм декомпозиции
- Иерархическая
 обработка больших
 сеток

Простое разбиение на 32 домена

Рациональное разбиение на 32 домена

Рациональное разбиение на 8 доменов

Критерии декомпозиции графов

степени доменов

- Обеспечение связности доменов
- Обеспечение связности множества внутренних узлов доменов

А.Н. Андрианов, А.В. Жохова, Б.Н. ЧетверушкинПроцессоров11314763New_sort13.595.594.384.16

11.00 11.10

10.56

13.61

METIS

Чему равно 25/4?

6.25

25/4=

25/4= **AX**

25/4 = 4 ? 6 ? 9

• Разрезать решетку 5 х 5 на 4 части

Декомпозиция сетки из 25 узлов на 4 части

25/4 = 4 ? 6 ? 9

• Декомпозиция решетки 5 х 5 на 4 домена

• Дисбаланс 9/4=2.25

25/4 = 4 ? 6 ? 9

• Декомпозиция решетки 5 х 5 на 4 домена

Декомпозиция сетки 25х25 на 7 частей

Пакеты декомпозиции графов

Chaco	Bruce Hendrickson
	Robert Leiand
ParMETIS	George Karypis
	Vipin Kumar
PARTY	Robert Prais, et al.
JOSTLE	Chris Walshaw, et al.
SCOTCH	Francois Pellegrini

Иерархический алгоритм

Огрубление графа

Спектральный метод

Метод спектральной бисекции

100 cut edges

42 cut edges

Локальное уточнение

Декомпозиция пакетом Metis

Hilbert-curve ordering

This ordering can be built by simple recursive procedure. When mesh changes locally, Hilbert curve changes locally too.

It cannot be used for parallel computations due to chain dependence of elements.

Декомпозиция по кривой Гильберта

Двухуровневое разбиение

Сетка предварительно разбивается на большое число *микродоменов,* образующих *макрограф* Вершины макрографа распределяются по процессорам

Разбиение тетраэдральной сетки, содержащей 2·10⁸ узлов, на 125 процессорах

 вычисления производились на кластере СКИФ МГу (1250 4-хядерных процессоров, 60 TFlop/s)

		геометрическая декомпозиция		ParMETIS	
число доменов		80 000		20 000	
время		21 сек.		10 сек.	
число вершин в домене		2612	2612	0 0 0 0	10 022
МИН.	макс.	2012	2013	2 320	10 932
среднее число связей с соседними доменами		14		14	
число некомпактных доменов		229		364	

Треугольная сетка из 75790 вершин (пространство вокруг крыла)

результат геометрической декомпозиции на 5 групп (в дальнейшем каждый процессор считывает свою группу вершин)

результат перераспределения малых блоков вершин

Фрагмент треугольной сетки из 75790 вершин

результат геометрической декомпозиции

результат перераспределения малых блоков вершин

Результат локального разбиения сетки из 75790 вершин на 50 доменов на 5 процессорах

Результат сбора плохих групп доменов и их повторного разбиения

Редуцирование доменов

Инкрементный алгоритм, Dm=25

INI75790_25_KL.IG mouseMU : gr 13 vert 50954 coord 0.559366 0.43858 for (0.559809 0.43852)

Kmetis, Dm=25

Визуализация сеточных данных

о Оперативная память

 \circ Кеш

 Операционные устройства

о Множественный доступ

о Бета-тестер

Визуализация

- Скалярные
- Векторные

- Стационарные
- Зависящие от времени

- Решетки
- Треугольные и тетраэдральные сетки

Этапы визуализации

Запись *Сетка Сеточная функция* Чтение

Формирование объектов виртуальной сцены

Отображение

Методы

- Распределенное иерархическое хранение
- Декомпозиция
- Огрубление с контролируемой точностью
- Клиент-серверная технология

- Потоковая обработка
- Хранение образов

Визуализация сеточных данных

Сечение регулярной 3D сетки плоскостью

 В результате сечения регулярной кубической решетки получается фрагмент неструктурированной сетки

Аппроксимация триангулированных поверхностей

• Алгоритмы синтеза

• Алгоритмы редуцирования

Начальная аппроксимация кривой

Аппроксимация кривой этап 2

1 вектор
Аппроксимация кривой этап 3

3 вектора

Аппроксимация кривой этап 4

7 векторов

Аппроксимация кривой этап 5

15 векторов

Методы редуцирования

Удаление ребра

Удаление точки

Уточнение топологии

Аппроксимация изоповерхностей

Плоскость, пересекающая цилиндр

Ошибка аппроксимации 5%

"Изоповерхность"

Многоуровневое огрубление больших сеток

Огрубление поверхностей

Ошибка	Количество точек	Количество треугольников	Коэффициент сжатия		
0%	13800	27357	-		
0,1%	1120	2117	12,9		
0,2%	447	808	33,9		
0,5%	175	304	90,0		

Огрубление поверхностей

Зависимость коэффициента сжатия от числа усеченных бит Сетка: 1000 x 3500 x 150 = 525 млн узлов

Огрубление данных

Якобовский М.В.

д.ф.-м.н.,

зав. сектором

«Программного обеспечения многопроцессорных систем и вычислительных сетей»

Института прикладной математики им. М.В.Келдыша Российской академии наук

mail: lira@imamod.ru

http://lira.imamod.ru

Заполнение пространства пирамидами

- На каждую из 2n точек в среднем опирается 2n пирамид
- Число пирамид ~ n²

Зависимость объема хранимых данных от числа микродоменов

Число микродоменов	1	50	1000	1500	2000	2500	3000
Размер описания (МБ)	124	127	1/15	152	158	163	168
	124	121	145	132	150	105	108

38 350 -> 2 356 196 узлов 219 034 * 8² -> 14 018 176 тетраэдров

На 35% больше чем 124